skip to main content


Search for: All records

Creators/Authors contains: "Williamson, G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Classical novae are shock-powered multiwavelength transients triggered by a thermonuclear runaway on an accreting white dwarf. V1674 Her is the fastest nova ever recorded (time to declined by two magnitudes is t2 = 1.1 d) that challenges our understanding of shock formation in novae. We investigate the physical mechanisms behind nova emission from GeV γ-rays to cm-band radio using coordinated Fermi-LAT, NuSTAR, Swift, and VLA observations supported by optical photometry. Fermi-LAT detected short-lived (18 h) 0.1–100 GeV emission from V1674 Her that appeared 6 h after the eruption began; this was at a level of (1.6 ± 0.4) × 10−6 photons cm−2 s−1. Eleven days later, simultaneous NuSTAR and Swift X-ray observations revealed optically thin thermal plasma shock-heated to kTshock = 4 keV. The lack of a detectable 6.7 keV Fe Kα emission suggests super-solar CNO abundances. The radio emission from V1674 Her was consistent with thermal emission at early times and synchrotron at late times. The radio spectrum steeply rising with frequency may be a result of either free-free absorption of synchrotron and thermal emission by unshocked outer regions of the nova shell or the Razin–Tsytovich effect attenuating synchrotron emission in dense plasma. The development of the shock inside the ejecta is unaffected by the extraordinarily rapid evolution and the intermediate polar host of this nova.

     
    more » « less
  2. Abstract

    The recovery capacity and the successional pathways of tropical forests after anthropogenic disturbance vary considerably and may depend on prior land‐use type and intensity. It is still unclear if forests subjected to high intensity impact, such as periodically burned pastures, are capable of restoring their original functional properties.

    This study analysed the functional trait dynamics of the dominant species in successional trajectories following two land uses, pasture or clear‐cut, north of Manaus. Fourteen years of demographic data from the Biological Dynamics of Forest Fragments Project were used to determine the dominant species of the two successional trajectories, for which leaf area, leaf dry mass content, specific leaf area and wood density were collected, whereas seed mass was obtained from literature. Community weighted mean of each trait was weighted by basal area determined annually along succession. Prinicpal components analysis was used to analyse the extension and direction of the functional trajectories of plots.

    Forests regenerating from pastures increased in wood density through successional time, but other traits did not change significantly. Succession after clear‐cut exhibited increasing leaf dry mass content and seed mass, and decreasing leaf area over time, but no change in wood density. Functional trajectories of plots after clear‐cut were more extensive and directional than those of pasture‐derived plots.

    Synthesis and applications. We demonstrate how central Amazonian secondary forests subjected to different land uses show differences in functional trait trajectories, in ways parallel to previously shown changes in biomass, floristic diversity and forest structure. These results indicate that natural recovery of forest functional traits is affected by prior land‐use history, with implications for management and restoration. Thus, natural recovery of forests on abandoned pastures is much slower than clear‐cuts, even though seed sources from mature forests are very close to these areas, and the former may need intervention to counteract the diverted succession.

     
    more » « less
  3. null (Ed.)
    Old-growth tropical forests harbor an immense diversity of tree species but are rapidly being cleared, while secondary forests that regrow on abandoned agricultural lands increase in extent. We assess how tree species richness and composition recover during secondary succession across gradients in environmental conditions and anthropogenic disturbance in an unprecedented multisite analysis for the Neotropics. Secondary forests recover remarkably fast in species richness but slowly in species composition. Secondary forests take a median time of five decades to recover the species richness of old-growth forest (80% recovery after 20 years) based on rarefaction analysis. Full recovery of species composition takes centuries (only 34% recovery after 20 years). A dual strategy that maintains both old-growth forests and species-rich secondary forests is therefore crucial for biodiversity conservation in human-modified tropical landscapes. 
    more » « less